MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

SECTION – B (Marks 48)

Q. 2 Solve the following Questions.

Note: Solve the following Questions.

	-			· · · · ·	-
(i)	Simplify $z = \frac{(3+i)^3}{3-i}$ in the form $a+ib$ where $i = \sqrt{-1}$ and find the value of $ z $.	04	OR	Find row rank of $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 4 & 2 & 1 & 3 \\ 5 & 2 & -1 & 2 \end{bmatrix}$	04
(ii)	Solve the system of linear equations. (3-2i)x+(1+2i)y-1=0 (3+2i)x-(1-2i)y-1=0	04	OR	If 4 th and 10 th terms of a HP are $\frac{2}{15}$ and $\frac{2}{33}$ respectively, then find its 23 rd term.	04
(iii)	If $A = \begin{bmatrix} 5 & 9 & 2 \\ 4 & 8 & 1 \\ 3 & 7 & 0 \end{bmatrix}$, then show that $(A + A^t)$ is symmetric.	04	OR	For what value of p , vectors $3p\underline{i}+11\underline{j}-5\underline{k}$ and $2p\underline{i}+p\underline{j}+2\underline{k}$ are mutually perpendicular?	04
(iv)	Find the volume of a tetrahedron with vertices $A(1,2,2), B(2,1,1), C(3,3,4)$ and $D(0,1,5)$	04	OR	Insert four A.Ms between 5 and 25.	04
(v)	If 2^{nd} and 6^{th} terms of a GP are 3 and $\frac{3}{4}$ respectively, find its 16^{th} term.	04	OR	Sum to n-terms the series 1.5 + 2.6 + 3.7 + 4.8 +	04
(vi)	How many 7-digit different numbers can be formed from the digits $5,5,6,6,9,9,9$ using all and how many of them are greater than $9,950,000$?	04	OR	Prove that $1+4+7+\ldots+(3n-2)=\frac{n(3n-1)}{2}$ by using the mathematical induction.	04
(vii)	For a real valued function $f(x) = \frac{5x-2}{x+2}, x \neq -2$ find $f^{-1}(x)$ and determine its domain and range.	04	OR	If $\cos \alpha = \frac{3}{5}$, $\sin \beta = \frac{5}{13}$ with $\frac{\pi}{2} < \beta < \pi$ and $\frac{3\pi}{2} < \alpha < 2\pi$, then find the value of $\sin(\alpha + \beta)$	04
(viii)	State number of diagonals of an n-sided polygon and find number of diagonals of a nine sided polygon.	04	OR	Prove that $\sin 2\theta + \sin 4\theta + \sin 6\theta + \sin 8\theta = 4 \sin 5\theta \cos 2\theta \cos \theta$	04
(ix)	Find the equation of a parabola $y = ax^2 + bx + c$ that cuts x- axis at points $(-4,0)$, $(4,0)$ and passes through a point $(0,8)$.	04	OR	A pair of fair dice is thrown. The number of dots on the top are added. What is the probability of getting a sum greater than 9 or a sum divisible by 5.	04
(x)	Verify that $\cos^4\theta = \frac{1}{8} (3 + 2\cos 2\theta + \cos 4\theta)$	04	OR	Solve triangle <i>ABC</i> with $\alpha = 31^{\circ}5'$, $\beta = 50^{\circ}55'$ and $C = 13cm$ using usual notations.	04
(xi)	Find radii of the escribed circles of triangle <i>ABC</i> opposite to the largest and smallest sides given that $a = 13, b = 10$ and $c = 7$ (using usual notations)	04	OR	Without drawing, guess the graph of $y = Sin \frac{\theta}{6}$ and find its period, frequency and amplitude.	04
(xii)	Verify that $2S = 8R \cos{\frac{\alpha}{2}} \sin{\frac{\beta}{2}} \cos{\frac{\gamma}{2}}$	04	OR	Verify that $\operatorname{Tan}^{-1}\frac{3}{4} - \operatorname{Tan}^{-1}\frac{4}{3} + 2\operatorname{Tan}^{-1}\frac{1}{7} = 0$	04

SECTION – C (Marks 32)

(4 x 8 = 32)

(Use of graph paper is not necessary. Candidates can make their own grid on answer book)

Q.3	Find inverse of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$	08	OR	If $\underline{a} = -10\underline{i} + 2\underline{j} + 4\underline{k}$ and $\underline{b} = \underline{i} - \underline{j} + 2\underline{k}$ then find a unit vector orthogonal to $\underline{a} \times \underline{b}$. Also find angle between the vectors \underline{a} and \underline{b} .	08
Q.4	Use Gauss Jordan method to solve the system of linear equations: x-2y+z=3; $3x+5y=11$; $4y+3z=13$	08	OR	If $y = \frac{1}{2(1!)} \left(\frac{1}{6}\right) + \frac{1.3}{4(2!)} \left(\frac{1}{6}\right)^2 + \frac{1.3.5}{8(3!)} \left(\frac{1}{6}\right)^3 + \dots$ then verify that $5y^2 + 10y - 1 = 0$	08
Q.5	Find point of intersection of the functions $f(x) = -x + 6$ and $g(x) = x^2 - 4x + 6$ graphically.	08	OR	Find general solution of a trigonometric equation $3\cos x + 3 = 2\sin^2 x$	08
Q.6	Find maximum and minimum values of a function f(x,y) = 2x + 3y subject to the constraints $x + 2y \le 10$, $3x + y \le 9$, $9x + 8y \le 72$, $x \ge 0$, $y \ge 0$	08	OR	Sketch the graph of $y = 2\cos\frac{\theta}{2}$; $-\pi \le \theta \le \pi$	08

(12 x 4 = 48)